
Do Android Taint 
Analysis Tools 

Keep Their 
Promises?

Pauck, F., Bodden, E., Wehrheim, H.



Overview

● Background
○ Taint Analysis
○ Benchmarks

● Approach
○ ReproDroid

■ AQL (Android App Analysis Query Language)
■ AQL-System
■ Brew (Benchmark Refinement and Execution Wizard)

● Research Questions
● Setup

○ Tool Selection
○ Benchmark Selection
○ Experiments

● Results
○ Answering Research Questions
○ Threats to Validity



Background



Taint Analysis

Taint Analysis

Data Leaks



Taint Analysis

● Aliasing
○ Same memory location shared by many variables (reference types).
○ Taint should be carried to all other variables

● Static Fields
○ Declared on a type, not an instance.
○ Treat static fields differently

● Lifecycle and Callbacks
● Inter-Component Communication

○ A leak can originate in a class and end in another.
○ Android allows for inter-component or inter-app communication (ICC/IAC)
○ This allows tainted data to be propagated between components and apps

● Analysis Abstraction and Algorithms
○ The taint analysis may or may not support different łsensitivitiesž, such as flow, context, path, 

field, object and/or thread-sensitivity
● Reflection

○ Allows to invoke methods (or access fields) through dynamically generated strings.
○ Resolve these strings to reliably detect taint flows.



Taint Analysis



Taint Analysis



Benchmarks

● Used to evaluate Android app analysis tools
● A collection of apps containing certain 

features
● DroidBench, ICC-Bench

○ Imprecise ground truth
● DIALDroid-Bench

○ Real-world apps
○ No source code
○ No ground truth

Excerpt of the source code of one of DroidBench’s app



Benchmarks

Comparison of different analysis tools outputs.



Approach



ReproDroid - Overview

● A framework to support tools evaluation and 
comparison by following three concepts:
○ AQL (Android App Analysis Query Language)
○ AQL-System
○ Brew (Benchmark Refinement and Execution Wizard)

Sketch of ReproDroid toolchain



AQL (Android App Analysis Query 
Language)

● A query language for precisely formulating questions 
and answers about app properties such as flows.

● Two parts:
○ AQL-Queries
○ AQL-Answers



AQL-Queries

AQL-Query example

● AQL-Queries enables us to ask for 
Android specific analysis subjects 
in a general, tool independent way.

● AQL-Queries currently supports 
asking for analysis subjects such as 
flows, intents, intent-filters and 
permissions.



AQL-Answers

AQL-Answer example

● AQL-Answers enables us to represent analysis 
results standardized form.

● Syntax defined via an XML schema definition.



AQL-System

● Processes AQL-Queries and determines AQL-Answers
● XML configuration file

○ which tools are available and how to execute these
○ which queries can be answered by which tool
○ how to convert a tool’s result into an AQL-Answer 

● Given an AQL-Query:
○ launches the tools that may respond to it
○ translate the results into an AQL-Answer using the given tool-specific 

converters



Brew (Benchmark Refinement and 
Execution Wizard)

● An assistant to refine and execute benchmarks through a GUI.
● The proccess of refining benchmarks using Brew consists of three 

steps:
○ Case Identification
○ Source and Sink Identification
○ Ground Truth Identification

● Once the refinement steps have been completed, the benchmark 
can be executed and evaluated.
○ Brew determines one AQL-Query and one expected AQL-Answers per 

case
○ Brew sends a AQL-Query to each an AQL-System for each benchmark 

case and compares the actual result and expected result
○ Brew determines success and failures for each case and computes 

precision, recall and F-measure for the tools



ReproDroid

● Brew uses the AQL-System
● The AQL-System uses the AQL.
● Benchmarks and Analysis Tools exist in the community

Sketch of ReproDroid toolchain



Research Questions



RQ1. Do Android app analysis tools keep 
their promises?

● Determine what is a "promise"
○ The supported features
○ The tool's accuracy (precision, recall, F-measure)
○ Runtime appears to play a minor role

● Prepare a benchmark set (refined with Brew)
○ DroidBench
○ ICC-Bench
○ Their feature-checking benchmark cases

● Brew is launched six times
○ 1 AQL-System each time (1 tool at a time)
○ Default tool options



RQ2. How do the tools compare to each 
other with respect to accuracy?

● Choose F-measure as means for evaluating accuracy
○ For each category and tool the average value is computed

● Refined version of DroidBench
○ ICC-Bench is not used to avoid intermixing benchmark cases



RQ3. Which tools support large-scale 
analysis of real-world apps?

● Evaluate whether the tools are able to deal with
○ Large apps (in terms of code size)
○ A large numbers of apps
○ ICC and IAC
○ newer Android versions.

● Systematic derivation of a ground truth
○ Refined version of DIALDroid-Bench

● To check the tools ability for a large number of apps, ICC and IAC
○ Own intent-matching benchmarks

● To check applicability to new android APIs
○ Different versions of own feature-checking test apps and DroidBench



Setup



Tool Selection

● All tools selected implement taint analysis
● Only consider static taint analysis tools
● Consider only approaches that are at least flow-sensitive or context-sensitive



Tool Selection

● All six tools have at least ICC and at best IAC 
capabilities

● FlowDroid computes flows within single 
components only



Tool Selection

● Analysis Engine
○ All tools except Amandroid are based on Soot and 

operate on Jimple as intermediate language
● Source and Sink Identification

○ Sources and sinks considered are specified by SuSi
○ For the micro-benchmarks, the sources and sinks 

needed for finding flows are identified by all tools
● ICC and IAC capabilities

○ Some tools are shipped with built-in IAC 
capabilities

○ Usage of ApkCombiner to take multiple .apk files 
as input and merge them into a single .apk file.



Benchmark Selection

● Experiments based on three 
benchmarks suites
○ Droid-Bench
○ ICC-Bench
○ DIALDroid-Bench

● 18 apps were developed comprising 
21 positive and 6 negative 
feature-checking benchmark cases
○ Exploits only one specific feature at a 

time and can thus be used to 
explicitly check the handling of a 
dedicated feature in a tool.

● Three apps to specifically evaluate the 
precision of intent-matching 
algorithms were developed

● The analysis has to detect whether a 
certain intent can be received by a 
component. If so, the action, category 
and data attributes of an intent have 
to match those of a component’s 
intent-filter



Results



Feature Promises



Accuracy Promises

Accuracy Promises



F-Measure Scores



DIALDroid-Bench Results on real-world apps



Intent Matching: Precision, Recall, F-Measure



Up-to-date Status



Threats to Validity

● Manual (although tool-assisted) definition of the ground truth
○ No way around it, the tools that could derive the ground truth and the tools being evaluated are 

the same
○ Cannot rely on a single tool to generate the ground truth
○ ReproDroid allows us to refine the expected result definitions multiple times in the search for 

precision
● All tools were executed using their default configuration (except for available memory)

○ Some tools may reproduce different results using different parameters
○ A non-expert software developer os more likely to use those default settings

● Metrics precision
● AQL-System may contain bugs



Obrigado!
● Luca Ananias - lams3@cin.ufpe.br
● Andre De’ Carli - acms@cin.ufpe.br


