
ServDroid: Detecting Service

Usage Inefficiencies in Android

Applications

Summary

● Introduction
● Background
● Service Usage Anti-Patterns
● Detecting Service Usage Bugs
● Empirical Evaluation
● Conclusion

2

1.

Introduction

3

Introduction

● System Services & App Services

● Started Services, Bound Services, Hybrid Services

● Services Anti-Patterns

● Unneeded Memory Allocation and Energy Inefficiencies

● ServDroid

4

2.

Background

5

Started Service

6

Bound Service

7

Hybrid Service

Started Service

 +

Bound Service

8

3.

Services Usage

Anti-Patterns

9

Services Usage Anti-Patterns

● Premature create

● Late Destroy

● Premature Destroy

● Service Leak

10

Premature Create

11

Premature Create

12

Services Usage Anti-Patterns

● Premature create

● Late Destroy

● Premature Destroy

● Service Leak

13

Late Destroy

14

Late Destroy

15

Services Usage Anti-Patterns

● Premature create

● Late Destroy

● Premature Destroy

● Service Leak

16

Premature

Destroy

17

Services Usage Anti-Patterns

● Premature create

● Late Destroy

● Premature Destroy

● Service Leak

18

Service Leak

19

Service Leak

20

4.

Detecting Service Usage

Bugs

21

Detecting Service Usage Bugs

22

Call Graph generated by Soot Framework

Detecting Service Usage Bugs

23

App Control Flow CFG is also generated by Soot

● Info Flow CFG

Detecting Premature Create Bugs 1

24

1. Search in every method of app all statements stmB which is a

bindService();

2. For every stmB determine c (client component) and s (service);

3. Then, from CFG we find a post-dominator stmU which is the first

statement that invokes a method of s;

4. We see if there is any other statement between stmB and stmU. If

there is, there is a premature create;

Detecting Premature Create Bugs 2

25

1. Search in every method of app all statements stmB which is a

bindService();

2. For every stmB determine c (client component) and s (service);

3. Check if service s doesn’t overwrite onStartCommand();

4. If it doesn’t, the CFG must satisfy these two conditions:

a. No component binds service when startService() executes;

b. The bindService statement is not a immediate post-dominator of

startService() there is no stopService() between them;

Detecting Late Destroy Bugs

26

● For started services:

○ Detection is straightforward, and it’s reduced

to check if stopService() or stopService(int) is

not called in the onStartCommand();

Detecting Late Destroy Bugs

27

● For bound services:

1. For each unbindService() we determine c (client component) and s

(service) such that c unbinds s;

2. In CFG, we look for stmU such that stmU is the last call of a method of s

from c;

3. If there are statements between then, there is a lat destroy;

Detecting Premature Destroy Bugs

28

If the started or hybrid service is shared by two or more components

(callers) and stopSelf() is called instead of stopSelf(int) in the

onStartCommand() we have a premature destroy;

Detecting Service Leak Bugs

29

1. Find all start (bind) statements and put them in set S1;

2. Find all stop (unbind) statements and put them in set S2;

3. Remove from S2 all statements that are triggered by end users;

4. For each start (bind) in S1, check whether its corresponding stop

(unbind) statement is on S2. If it’s not then service leaks, if yes, we

check we check if the stop statement is always reached by the start

statement. If not, service leaks;

5.

Empirical Evaluation

30

What are the precision, recall, and time overhead of

ServDroid?

● Empirical Study on 45 Apps

● Manual vs ServDroid

31

1.

32

What are the precision, recall, and time overhead of

ServDroid?

● Empirical Study on 45 Apps

● Manual vs ServDroid

Recall and Precision: 100%

Time Overhead: 4,3 s

Time to analyze per app: 96 s

33

1.

How much energy can be saved if these services usage

inefficiency bugs are fixed?

● Fix the bugs

● Original vs Repackaged apps for 15 minutes each

● Trepn Profiler

34

2.

35

How much energy can be saved if these services usage

inefficiency bugs are fixed?

● Fix the bugs

● Original vs Repackaged apps for 15 minutes each

● Trepn Profiler

Average Consumption: 546, 7 J -> 459,5 J = 87,14 J (- 15.94%)

36

2.

Are background services widely used in Android apps?

Which type of services are used most frequently?

● 1,000 apps:

- 939 use background services.

- Started Service: 4,952 (60.87%)

- Bound Service: 2,468 (30.34%)

- Hybrid Service: 715 (8.79%)

 8 services on average per App

37

3.

Are service usage inefficiency bugs common in practice?

● 825 (82.5%) have at least one kind of inefficiency bug;

● 608 (60.8%) have at least two kinds of inefficiency bugs;

● 304 (30.4%) have no less than three kinds of inefficiency bugs;

● and 59 (5.9%) have all the four kinds of inefficiency bugs.

Each app has 4.43 service usage inefficiency bugs on average

38

4.

How are the four kinds of service usage inefficiency

bugs distributed in the three types of services?

39

Started Bound Hybrid

Premature
Create 0 (0%) 400 (71,05%) 163 (28.95%)

Late Destroy 491 (38.18%) 620 (48.21%) 620 (48.21%)

Premature
Destroy 137 (78.29%) 0 (0%) 38 (21.71%)

Service Leak 1,720 (71.61%) 392 (16.32%) 290 (12.07%)

5.

40

Among the four kinds of service usage inefficiency bugs,

which kind is the most prevalent?

41

Started Bound Hybrid Total

Premature
Create 0 (0%) 400

(71,05%)
163

(28.95%) 563

Late
Destroy

491
(38.18%)

620
(48.21%)

620
(48.21%) 1286

Premature
Destroy

137
(78.29%) 0 (0%) 38 (21.71%) 175

Service
Leak

 1,720
(71.61%)

392
(16.32%)

290
(12.07%) 2402

6.

Among the three types of services, the usage of which

type is more prone to inefficiency bugs?

● Started: 2348 out of 4952 (47,4%)

● Bound: 1412 out of 2468 (57,2%)

● Hybrid: 666 out of 715 (93,1%)

42

7.

Conclusion

● 4 Services Anti-Patterns

● Unneeded Memory Allocation and Energy Inefficiencies

● ServDroid

43

thanks!

Any questions?

Douglas Soares - dsl
Jônatas de Oliveira - joc

44

