7
SERVDROID: DETECTING SERVICE

UsAGE INEFFICIENCIES IN ANDROID
(j APPLICATIONS

(@)

SUMMARY

Introduction

Background

Service Usage Anti-Patterns
Detecting Service Usage Bugs
Empirical Evaluation
Conclusion

(v

INTRODUCTION

(@)

INTRODUCTION

System Services & App Services

S
Started Services, Bound Services, Hybrid Services

Services Anti-Patterns
Unneeded Memory Allocation and Energy Inefficiencies

ServDroid

()

BACKGROUND

10)

STARTED SERVICE

(2)
startService() stopService()

onCreate() stopSelf()

onStartCommand() onDestroy()

0)

BOUND SERVICE

(2)

P : , .
/bindSCr\'lCC() unbindService()

v

/

onCreate() onUnbind()

onBind() onDestroy()

(@)

HYBRID SERVICE
Started Service

<+

Bound Service

(>)

SERVICES USAGE
ANTI—PATTERNS

10)

SERVICES UsAGE ANTI-PATTERNS

Premature create Service t
s
Late Destroy i

oo [V [V
Premature Desfroy

. — Poemwedey [V [[V
e

(0]

10)

PREMATURE CREATE

public class NCBlackListActivity {
public final void run(){
Intent intent = new Intent(context, NotificationManagerService
. class);
context . bindService (intent, aqL.dYV, 1);
0j ()
arF () ;

dZm.aqC();

}
}

public class NotificationManagerService extends Service {
public IBinder onBind(Intent intent) {

return this .dZm;

}
}

n

10)

PREMATURE CREATE

public final class GoogleDriveActivity extends apf implements
c.b, e.af
public final void onCreate(Bundle paramBundle){
Intent locallntent = getIntent () ;
onNewlIntent(locallntent) ;

getApplicationContext () . bindService (new Intent(this ,
GoogleDriveService. class), this.af, 1);

}

protected final void onNewlIntent(Intent paramintent){
m();

}

final void m(){
Intent locallntent = new Intent(this, GoogleDriveService. class);
getApplicationContext () . startService (locallntent);

}

}

12

10)

SERVICES UsAGE ANTI-PATTERNS

Premature create Service t
s
Late Destroy ol

oo [V [V
Premature Desfroy

. — Poemwedey [V [[V
e

13

10)

LATE DESTROY

public class OverlayService extends Service {
public static void a(Context paramContext){
paramContext. startService (new Intent(paramContext, OverlayService.
class));

}

public int onStartCommand(Intent paramlIntent, int paramintl, int
paramInt2){

return;
}
public static void b(Context paramContext){
paramContext.stopService (new Intent(paramContext, OverlayService.
class));

14

D)

LATE DESTROY

final class ahx extends ag) implements ServiceConnection|
final void b(){

final void d(){
locallntent = new Intent("android.media.
MediaRouteProviderService");
this .o = this .a.bindService (locallntent , this, 1);
}
final void f(){
localahy .h.j.post(new ahz(localahy)) ;
}
final void e(){
this .a.unbindService(this) ;
}
}

15

10)

SERVICES UsAGE ANTI-PATTERNS

Premature create Service t
s
Late Destroy i

oo [V [V
Premature Desfroy

. — Poemwedey [V [[V
e

16

public class MessageService extends Service {
public void a(Context paramContext){
Intent intent=new Intent(paramContext.this, MessageService. class);

m) z startService (intent);
5 }

public void b(Context paramContext){
Intent intent=new Intent(paramContext.this, MessageService. class);
startService (intent);

2
PREMATURE 10 public void m(Context paramContext){

Intent intent=new Intent(paramContext.this, MessageService. class);

D ESTROY startService (intent);
1 }

public int onStartCommand(Intent paramlIntent,int paramlIntl1,
int paramiInt2){

stopSelf () ;
return 1;

7

10)

SERVICES UsAGE ANTI-PATTERNS

Premature create Service t
s
Late Destroy i

— Pemsweame | [V| V]
Premature Destroy

. " Pematwedestoy | v [| V|
Sepiceial

18

10)

SERVICE LEAK

public class MpActivity extends Activity {

public final void a(g paramg){
startService (new Intent(this, MpService.class));

if (b()){

stopService (new Intent(this, MpService.class));

19

(@)

SERVICE LEAK

. public class ArtMonitorImp}{

public void startMonitoring () {

this .mContext.bindService(new Intent(this . mContext,
ArtDownloadService.class), this.mServiceConnection, 5);

20

@

DETECTING SERVICE USAGE
BUGS

10)

DETECTING SERVICE UsAGE BuaGs

/ . /' , "\. . \
Jlmple & (Serv;c;e .: service
Manifest file 4\ Identifier / callee

/// ’ » -- i

/
/

Soot ko (S
statements of |/ / /" Bug e
—> | | emcause [/ [2#20F6 | (paeor) |—> 1
/

App Inefficiency bugs

call graph /_E/ <.30mr30nen~f\'\.| » | component |
grap _ Identifier / caller
p e y

.\\\

Figure 6: An overview of ServDroid.

Call Graph generated by Soot Framework

22

10)

DETECTING SERVICE UsAGE BuaGs

Info Flow CFG

DEFINITION 1 (DOMINATOR). In a CFG, a node (statement) s; is
dominated by another node s; if every path from the entry of the CFG
tos;j contains sj. sj is called a dominator of s;.

DEFINITION 2 (POST-DOMINATOR). In a CFG, a node (statement)
si is post-dominated by another node s; if every path from s; to the
exit of the CFG contains sj. sj is called a post-dominator of s;.

App Control Flow CFG is also generated by Soot

23

(@)

DETECTING PREMATURE CREATE BuGs 1

Search in every method of app all statements stmB which is a
bindService();

For every stmB determine c (client component) and s (service);
Then, from CFG we find a post-dominator stmU which is the first
statement that invokes a method of s;

We see if there is any other statement between stmB and stmU. If

there is, there is a premature create;

24

(@)

DETECTING PREMATURE CREATE Buas 2

Search in every method of app all statements stmB which is a
bindService();

For every stmB determine c (client component) and s (service);

Check if service s doesn’t overwrite onStartCommand();

If it doesn’t, the CFG must satisfy these two conditions:

a. Nocomponent binds service when startService() executes;

b. The bindService statement is not a immediate post-dominator of

startService() there is no stopService() between them;
25

(@)

DeTeECTING LATE DESTROY BUGS

e Forstarted services:
o Detection is straightforward, and it's reduced
to check if stopService() or stopService(int)is

not called in the onStartCommand():

26

(@)

DeTeECTING LATE DESTROY BUGS

e For boundservices:
1. For each unbindService() we determine c (client component) and s
(service) such that c unbinds s;
2. InCFG, we look for stmU such that stmU is the last call of a method of s
fromc;

3. Ifthere are statements between then, there is a lat destroy;

27

(@)

DETECTING PREMATURE DESTROY BuUGS

If the started or hybrid service is shared by two or more components
(callers) and stopSelf()is called instead of stopSelf(int)in the

onStartCommand() we have a premature destroy;

28

A W NV

(@)

DETECTING SERVICE LEAK BUGS

Find all start (bind) statements and put them in set S7;

Find all stop (unbind) statements and put them in set S2;

Remove from S2 all statements that are triggered by end users;

For each start (bind) in S1, check whether its corresponding stop
(unbind) statement is on S2. If it's not then service leaks, if yes, we
check we check if the stop statement is always reached by the start

statement. If not, service leaks:;

29

(=)

EMPIRICAL EVALUATION

(1)

WHAT ARE THE PRECISION, RECALL, AND TIME OVERHEAD OF
SERVDROID?

e Empirical Study on 45 Apps

e Manual vs ServDroid

31

App name

Version

Services

Started Bound Hybrid Total

Service usage inefficiency bugs
PCBs LDBs PDBs SLBs Total

Google Play services
Gmail

Maps

YouTube

Facebook

Google

Google+
GoogleText-to-Speech
WhatsApp Messenger
Google Play Books
Messenger

Hangouts

Google Chrome
Google Play Games
Google TalkBack
Google Play Music
Google Play Newsstand
Google Play Movies & TV
Google Drive
Samsung Push Service
Instagram

Sum

11.0.55 (436-156917137)
7.6.4.158567011.release
9.54.1
12.23.60
10.2.0
7.3.25.21.arm
9.14.0.158314320
3.11.12
2.17.231
3.13:17
123.0.0.11.70
20.0.156935076
58.0.3029.83
3.9.08(3448271-036)
5.2.0
7.8.4818-1.R.4063206
4.5.0
3.26.5
2.7.153.14.34
1.8.02
10.26.0

130
18
12
10
22
21
23

4
9
8
40
11
16
4
2
15
8
6
6
11
14

=)}

17

N O WKN = b O O NN OC M UL O - O B WbE &

1
1
5
2
1
9
9
0
1
3
1
4
6
0
4

105

153
24
25
15
34
37
28

5
19
11
41
22
27
4
3
22
10
12
15
11
20

(=

W o = OO0 = OO0 O0OO0 OO0 WUN O O U O NN = O
—_wWN O = WO O O = = O N O = W DN = = L
OO OO0 =000 = OO NOD OO OO O

Average

2.3

7.1

(0

WHAT ARE THE PRECISION, RECALL, AND TIME OVERHEAD OF
SERVDROID?

e Empirical Study on 45 Apps

e Manual vs ServDroid
Recall and Precision: 100%

Timne Overhead: 4,3 s

Time to analyze per app: 96 s

33

(2

How MUCH ENERGY CAN BE SAVED IF THESE SERVICES USAGE
INEFFICIENCY BUGS ARE FIXED?

e Fixthebugs
e Original vs Repackaged apps for 1S minutes each

e Trepn Profiler

34

App name

Energy consumption

Original (J) Repaired (J)
Google Play services 574.68 373.42
Gmail 437.05 388.25
Maps 626.67 487.28
YouTube 803.31 687.05
Facebook 553.94 510.34
Google 498.40 426.82
Google+ 438.59 422.57
GoogleText-to-Speech 395.90 353.91
WhatsApp Messenger 421.93 343.58
Google Play Books 474.77 435.57
Messenger 509.60 412.92
Hangouts 370.33 338.30
Google Play Games 549.86 475.03
Google TalkBack 458.57 429.97
Google Play Music 567.35 458.59
Google Play Newsstand 512.50 442.20
Google Play Movies & TV 363.39 317.45
Google Drive 338.49 286.74
Instagram 496.44 452.05

(2

How MUCH ENERGY CAN BE SAVED IF THESE SERVICES USAGE
INEFFICIENCY BUGS ARE FIXED?

e Fixthebugs
e Original vs Repackaged apps for 1S minutes each

e Trepn Profiler

Average Consumption: 546,7 J ->459,5 J = 87,14 J (- 15.94%)

36

(3)

ARE BACKGROUND SERVICES WIDELY USED IN ANDROID APPS?
W/HICH TYPE OF SERVICES ARE USED MOST FREQUENTLY?

e 1,000 apps:
- 939 use background services.
- Started Service: 4,952 (60.87%)
- Bound Service: 2,468 (30.34%)
- Hybrid Service: 715 (8.79%)

8 services on average per App

37

(3)

ARE SERVICE USAGE INEFFICIENCY BUGS COMMON IN PRACTICE?

e 825(82.5%) have at least one kind of inefficiency bug;

e 608 (60.8%) have at least two kinds of inefficiency bugs;

e 304 (30.4%) have no less than three kinds of inefficiency bugs;
e and 59 (5.9%) have all the four kinds of inefficiency bugs.

Each app has 4.43 service usage inefficiency bugs on average

38

(5,

How ARE THE FOUR KINDS OF SERVICE USAGE INEFFICIENCY
BUGS DISTRIBUTED IN THE THREE TYPES OF SERVICES?

Started Bound Hybrid
A 0 (0%) 400 (7105%) | 163 (28.95%)
Create
Late Destroy | 491(38.18%) 620 (48.21%) | 620(48.21%)
Premature : 3 5
Deatio) 137 (78.29%) 0 (0%) 38 (21.71%)
Service Leak | 1,720 (71.61%) 392 (16.32%) 290 (12.07%)

g | S| B | st

| Prematurecreate | | vV | V

| Prematuredestoy | vV | | V
Service leak

40

(s

AMONG THE FOUR KINDS OF SE»RVICE USAGE INEFFICIENCY BUGS,

WHICH KIND IS THE MOST PREVALENT?

Started Bound Hybrid Total
Premature y 10]0) 163
Createll (0%) (71,05%) (28.95%) g
Late 491 620 620 1286
Destroy | (38.18%) (48.21%) (48.21%)
Premature 137 o p
Destroy | (78.29%) 0 (0%) 38 (21.71%) 175
Service 1,720 392 290 2402
Leak | (71.61%) (16.32%) (12.07%)

G,

AMONG THE THREE TYPES OF SERVICES, THE USAGE OF WHICH
TYPE IS MORE PRONE TO INEFFICIENCY BUGS?

e Started: 2348 out of 4952 (47,4%)
e Bound: 1412 out of 2468 (57,2%)
e Hybrid: 666 out of 715 (93,1%)

42

(@)

CONCLUSION

e 4 Services Anti-Patterns
e Unneeded Memory Allocation and Energy Inefficiencies

e ServDroid

43

THANKS!

Any questions?

Douglas Soares - dsl|
Jonatas de Oliveira - joc

44

