Catalog of Energy
Patterns for
Mobile
Applications

Vinicius Bezerra
Matheus Casa Nova

® Energy Patterns for Mobile Apps

Online Catalog with 22 patterns to improve the energy efficiency of iOS and Android apps.

U Awesome Mobile App Energy Papers

A curated list of awesome papers that study energy efficiency for mobile applications.

Download Curriculum Vitae
Updated on February, 2019.

Publications
Luis Cruz and Rui Abreu (2019). On the Energy Footprint of Mobile Testing Frameworks. /[EEE Transactions on Software Engineering.
Luis Cruz and Rui Abreu and John Grundy and Li Li and Xin Xia (2019). Do Energy-oriented Changes Hinder Maintainability?. In [CSME. (Slides)

Luis Cruz, Rui Abreu (2019). EMaa$S: Energy Measurements as a Service for Mobile Applications. In 41st Infernational Conference on Software Engineering: New Ideas and Emerging Technologies Results
Track (ICSE-NIER).

Luis Cruz, Rui Abreu and David Lo (2019). To the Attention of Mobile Software Developers: Guess What, Test your App!. In Empirical Software Engineering.
Luis Cruz and Rui Abreu (2019). Catalog of Energy Patterns for Mobile Applications. In Empirical Software Engineering.
Luis Cruz and Rui Abreu (2018). Using Automatic Refactoring to Improve Energy Efficiency of Android Apps. In CIbSE XX ibero-American Conference on Software Engineering.

Luis Cruz and Rui Abreu (2017). Performance-based Guidelines for Energy Efficient Mobile Applications. In IEEE/ACM international Conference on Mobile Software Engineering and Systems, MobileSoft
2017. (Slides)

Luis Cruz and Rui Abreu and Jean-Noél Rouvignac (2017). Leafactor: Improving Energy Efficiency of Android Apps via Automatic Refactoring. in IEEE/ACM International Conference on Mobile Software
Engineering and Systems, MobileSoft 2017. (Slides)

Luis Cruz and Jonathan Rubin and Rui Abreu and Shane Ahern and Hoda Eldardiry and Daniel G. Bobrow (2015). A wearable and mobile intervention delivery system for individuals with panic disorder.
In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia (pp. 175--182).

Strecht, Pedro and Cruz, Luis and Soares, Carlos and Mendes-Moreira, Joao and Abreu, Rui (2015). A Comparative Study of Regression and Classification Algorithms for Modelling Students’ Academic
Performance. Educational Data Mining 2013.

Cruz, Luis and Reis, Luis Paulo and Rei, Luis (2011). Generic optimization of humanoid robots’ behaviours. In 15th Portuguese Conference on Artificial intelligence, EPIA (pp. 385--397).

Cruz, Luis and Reis, Luis Paulo and Lau, Nuno and Sousa, Armando (2012). Optimization approach for the development of humanoid robots’ behaviors. Advances in Artificial Intelligence--IBERAMIA 2012
(pp. 491--500). Springer Berlin Heidelberg

Slide Share

RQ1: Which design patterns do mobile app developers adopt to improve en-
ergy efficiency?

RQ2: How different are mobile app practices addressing energy efficiency
across different platforms?

Catalogou Padroes de projetos voltados para eficiéncia energética

ooo

e 1027 Android
e 756 10S

Trabalhos
Relacionados

e Trabalhos voltados para
otimizacoes em baixo nivel,
drivers e kernels em
C,C++/Java

e Trabalhos de eficiéncia
energética focados em apps de
navegacgao

e Posts do stackoverflow

Contribuicoes

e Catalogo de Padroes de
projeto em linguagens
alto-nivel como Swift, Kotlin e
Java

Metodologia

Catalog of Energy Patterns for Mobile Applications

2, Collect Commits, Pull
Requests and Issues
with potential interest

3. Manual refinement of
subjects of interest

1. App Dataset
Collection

g Catalog of Energy Patterns

Fig. 1: Methodology used to extract energy patterns from mobile apps.

4. Thematic analysis

|

1. App Dataset
Collection

e Coletou dataset de apps
open-source
e 1027+756=1783 apps

|

1. App Dataset
Collection

o F = dr Oi d (https://f-droid.org)
e Community-curated collections of

Android open source apps

(https://github.com/Mybridge/amazing-android-apps)

|

1. App Dataset
Collection

e Collaborative List of Open-Source
i OS A p p S (https://github.com/dkhamsing/open-source-ios-apps)

?

2, Collect Commits, Pull
Requests and Issues
with potential interest

.*(energy|battery|power) . x*

o 1783 apps — 6028 matches

LY,

3. Manual refinement o
subjects of interest

— “Adding a link to the apps device settings in 1OS Settings.app would be great for

power users.” (False positive found in the app WordPress for iOS®).

— “(...) recently a lot of issues that the core team does not have the energy to
implement themselves have been closed.” (False positive found in the app Minetest
for Android?).

— “One thing is really important on mobile devices, and that is power consumption”

(True positive found in the app ChatSecure for i0S'?).

e 6028 — 1563 matches
o 332 commits

o 1089 issues
o 142 PRs

e Metodologia sugerida em papers
baseada em 4 passos:
o Familiarization with data
o Generating initial labels
o Reviewing themes
o Defining and naming themes

g Catalog of Energy Patterns

Table 2: Energy patterns’ occurrences and related work.

Dark UI Colors (Agolli et al., 2017;
Linares-Vésquez et al.,
2017; Li et al., 2014, 2015)
Dynamic Retry Delay -
Avoid Extraneous -
Work
Race-to-idle (Liu et al., 2016; Banerjee
and Roychoudhury, 2016;
Cruz and Abreu, 2017;
Pathak et al., 2012b)
(Banerjee and
Roychoudhury, 2016;
Reimann et al., 2014)

Power Awareness (Bao et al., 2016)
Reduce Size (Boonkrong and Dinh,
2015)

WiFi over Cellular (Metri et al., 2012)
Suppress Logs 1 (Chowdhury et al., 2018b) -
Batch Operations (Li and Halfond, 2014; [9, 10, 11]
Corral et al., 2015; Cai

et al., 2015)
(Gottschalk et al., 2014) [10]

Cache

Decrease Rate

User Knows Best
Inform Users

Enough Resolution
Sensor Fusion

Kill Abnormal Tasks
No Screen Interaction
Avoid Extraneous

-

N = W=l & =0

(Shafer and Chang, 2010)

(Kim et al., 2016)

g Catalog of Energy Patterns

4.1 Dark UI Colors

L\ A1 NR

Provide a dark UI color theme to save battery on devices with AMOLED?!3
screens (Agolli et al., 2017; Linares-Vésquez et al., 2017; Li et al., 2014, 2015).

Context: Screen is one of the major sources of power consumption in mobile
devices. Apps that require heavy usage of screen (e.g., reading apps) can have
a substantial negative impact on battery life.

Solution: Provide a Ul with dark background colors, as illustrated in Figure 4.
This is particularly beneficial for mobile devices with AMOLED screens, which
are more energy efficient when displaying dark colors. In some cases, it might
be reasonable to allow users to choose between a light and a dark theme. The

g Catalog of Energy Patterns

4.2 Dynamic Retry Delay

Whenever an attempt to access a resource fails, increase the time interval before
retrying to access the same resource.

Context: Mobile apps that need to collect or send data from/to other resources
(e.g., update information from a server). Commonly, when the resource is un-
available, the app will unnecessarily try to connect the resource for a number
of times, leading to unnecessary power consumption.

Solution: Increase retry interval after each failed connection. It can be either a
linear or exponential growth. Update interval can be reset upon a successful
connection or a given change in the context (e.g.. network status).

Example: Consider a mobile app that provides a news feed and the app is not
able to reach the server to collect updates. Instead of continuously polling the
server until the server is available, use the Fibonacci series'® to increase the
time between attempts.

g Catalog of Energy Patterns

4.3 Avoid Extraneous Work

Avoid performing tasks that are either not visible, do not have a direct impact

on the user experience to the user or quickly become obsolete. This has been

documented in the iOS online documentation®®.

Context: Mobile apps have to perform a number of tasks simultaneously. There
are cases in which the result of those tasks is not visible (e.g., the Ul is pre-
senting other pieces of information), or the result is not necessarily relevant to
the user. This is particularly critical when apps go to the background. Since
the data quickly becomes obsolete. the phone is using resources unnecessarily.

Solution: Select a concise set of data that should be presented to the user and
enable/disable update and processing tasks depending on their effect on the
data that is visible or valuable to the user.

Example: Consider a time series plot that displays real-time data. The plot needs
to be constantly updated with the incoming stream of data — however, if the
user scrolls up/down in the Ul view making the plot hidden, the app should
cease drawing operations related with the plot.

g Catalog of Energy Patterns

4.4 Race-to-idle

elease resources or services as soon as possible (such as wake locks, screen) (Liu
et al., 2016; Banerjee and Roychoudhury, 2016; Cruz and Abreu, 2017; Pathak
et al., 2012Db).

ontext: Mobile apps use a number of resources that can be manually closed
after use. While active, these resources are ready to respond to requests from
the app and require extra power consumption.
Solution: Make sure resources are inactive when they are not necessary by man-
ually closing them.
Example: Implement handlers for events that are fired when the app goes to
background, and release wake locks accordingly.

g Catalog of Energy Patterns

4.5 Open Only When Necessary

Open/start resources/services only when they are strictly necessary.

Context: Some resources require to be opened before use. It might be tempting
to open the necessary resources at the beginning of some task (e.g., upon the
creation of an activity). However, resources will be actively waiting for requests,
and consequently consuming energy.

Solution: Open resources only when necessary. This also avoids activating re-
sources that will never be used (Banerjee and Roychoudhury, 2016).

Example: In a mobile app for video calls, only start capturing video at the mo-
ment that it will be displayed to the user'® .

g Catalog of Energy Patterns

4.6 Push over Poll

Use push notifications to receive updates from resources, instead of actively query-
ing resources (i.e., polling).

Context: Mobile apps need to get updates from resources (e.g., from a server).
One way of checking for updates is by periodically query those resources. How-

ever, this will lead to several requests that will return no update, leading to
unnecessary energy consumption.

Solution: Use push notifications to get updates from resources. Note — this is a big
challenge amongst FOSS apps since there is no good open source alternative
for Firebase Cloud Messaging (former Google Cloud Messaging).

Example: In a messaging app, instead of actively check for new messages, the
app can subscribe push notifications.

g Catalog of Energy Patterns

4.7 Power Save Mode

Provide an energy efficient mode in which user experience can drop for the sake
of better energy usage.

Context: Whenever the device battery is running low, users want to avoid losing
connectivity before they reach a power charging station. If the device shuts
down, users might miss important calls or will not be able to do an important
task. Still, apps might be running unimportant tasks that will reduce battery
life in this critical context.

Solution: The app provides a power save mode in which it uses fewer resources
while providing the minimum functionality that is indispensable to the user.
It can be activated manually or upon some power events (e.g., when battery
reaches a given level). User experience can drop for the sake of energy effi-
ciency. Note, this is enforced in iOS for some use cases if the apps use the
BackgroundSync APIs.

Example: Deactivate features, reduce update intervals, or deactivate animated
effects in the UL

g Catalog of Energy Patterns

4.8 Power Awareness

Have a different behavior when the device is connected/disconnected to a power

station or has different battery levels.

Context: There are some features that are not strictly necessary to users although
they improve user experience (e.g., Ul animations). Moreover, there are oper-
ations that do not have high priority and do not need to execute immediately

(e.g., backup data in the cloud).

Solution: Enable or disable tasks or features according to power status. Even
when the device is connected to power, the battery might still be running low,
it might be advisable to wait until a pre-defined battery level is reached (or
the power save mode is deactivated).

Example: Delay intensive operations such as cloud syncing or image processing
until the device is connected to a charger.

g Catalog of Energy Patterns

4.9 Reduce Size

When transmitting data, reduce its size as much as possible.

Context: Data transmission is a common operation in mobile apps. However, such
operations are energy greedy and the time of transmission should be reduced

as much as possible.

Solution: Exchange only what is strictly necessary, avoiding sending unnecessary
data. Use data compression when possible.

Example: When performing HT'TP requests, use gzip content encoding to com-
press data.

g Catalog of Energy Patterns

4.10 WiFi over Cellular

Delay or disable heavy data connections until the device is connected to a WiFi
network.

Context: Data needs to be synchronized with a server but it is not urgent and
can be postponed.

Solution: Data connections using cellular networks are usually more battery in-
tensive than connections using WiFi (Metri et al., 2012). Low priority opera-
tions that require a data connection to exchange considerable amounts of data
should be delayed until a WiFi connection is available.

Example: Consider a mobile app to organize photos that allows users to backup
their photos in a cloud server. Use an API to check the availability of a WiFi
connection and postpone cloud synchronizing in case it cannot be reached.

g Catalog of Energy Patterns

4.11 Suppress Logs

Avoid using intensive logging. Previous work has found that logging activity at
rates above one message per second significantly reduces energy efficiency (Chowd-
hury et al., 2018b).

Context: Developers resort to logging in their mobile apps to ensure their cor-

rect behavior and simplify bug reporting. However, logging operations create
overhead on energy consumption without creating value to the end user.
Solution: Avoid using intensive logging, keeping rates below one message per
second.
Example: Disable logging when processing real-time data. If necessary enable
only during debugging executions.

g Catalog of Energy Patterns
GonpInNED

TASKS

4.12 Batch Operations

Context: Executing operations separately leads to extraneous tail energy con-
sumptions (Li and Halfond, 2014; Corral et al., 2015; Cai et al., 2015). As il-
lustrated in Figure 6, executing a task often induces tail energy consumptions
related with starting and stopping resources (e.g., starting a cellular connec-
tion).

Solution: Bundle multiple operations in a single one. By combining multiple tasks,
tail energy consumptions can be optimized. Although background tasks can be
expensive, very often they have flexible time constraints. I.e., a given task needs
to be eventually executed, but it does not need to be executed in a specific
time.

Example: Use Job Scheduling APIs (e.g., ‘android.app.job.JobScheduler’, ‘Fire-
base JobDispatcher’) that manage multiple background tasks occurring in a
device. These APIs will guarantee that the device will exit sleep mode only
when there is a reasonable amount of work to do or when a given task is ur-
gent. It combines several multiple tasks to prevent the device from constantly
exiting sleep mode (or doze mode). Other examples: execute low priority tasks
only if another task is using the same required resources; try to collect location

g Catalog of Energy Patterns

4.13 Cache

Avoid performing unnecessary operations by using cache mechanisms.

Context: Typically mobile apps present data to users that is collect from a remote

server. However, it may happen that the same data is being collected from the
server multiple times.

Solution: Implement caching mechanisms to temporarily store data from a
server (Gottschalk et al., 2014). In addition, verify whether there is an up-
date before downloading all data.

Example: Considering a social network app that shows other users’ profiles. In-
stead of downloading basic information and profile pictures every time a given

profile is opened, the app can use data that was locally stored from earlier
visits.

g Catalog of Energy Patterns

4.14 Decrease Rate

Increase time between syncs/sensor reads as much as possible.

Context: Mobile apps have to periodically perform operations. If the time be-
tween two executions is small, the app will be executing operations more of-
ten. In some cases, even if operations are executed more often, it will not affect
users’ perception.

Solution: Increase the delay between operations to find the minimal interval that
does not compromise user experience. This delay can be manually tuned by de-
velopers or defined by users. More sophisticated solutions can also use context
(e.g., time of the day, history data, etc.) to infer the optimal update rate.

Example: Consider a news app that collects news from different sources, each
one having its own thread. Some news sources might have new content only
once a week, while others might be updated every hour. Instead of updating all
threads at the same rate, use data from previous updates to infer the optimal
update rate of these threads. Connect to the news source only if new updates
are expected.

g Catalog of Energy Patterns

4.15 User Knows Best

Allow users to enable/disable certain features in order to save energy.

Context: Energy efficiency solutions often provide a tradeoff between features
and power consumption. However, this tradeoff is different for different users
— some users might be okay with fewer features but better energy efficiency,
and vice versa.

Solution: Allow users to customize their preferences regarding energy critical fea-
tures. Since this might be more intuitive for power users, mobile apps should
provide optimal preferences by default for regular users.

Example: Consider a mail client for POP3 accounts as an example. In some cases,
users are not expecting any urgent message and are okay with checking for new
mail in no less than 10 minutes for the sake of energy efficiency. On the other
hand, there are cases in which users are waiting for urgent messages and would
like to check for messages every two minutes. Since there is no automatic
mechanism to infer the optimal update interval, the best option is to allow
users to define it.

g Catalog of Energy Patterns

4.16 Inform Users

Let the user know if the app is doing any battery intensive operation.

Context: There are specific use cases in mobile apps that can be energy greedy.
On the other hand, some features might be dropping user experience in order
to improve energy efficiency. If users do not know what to expect from the
mobile app, they might think it is not behaving correctly.

Solution: Let users know about battery intensive operations or energy manage-
ment features. Properly flag this information in the user interface (e.g., alerts).

Example: Alert users when a power saving mode is active, or alert when a battery
intensive operation is about to be executed.

g Catalog of Energy Patterns

4.17 Enough Resolution

Collect or provide high accuracy data only when strictly necessary.

Context: When collecting or displaying data, it is tempting to use high resolu-
tions. The problem of using data with high resolution is that its collection and
manipulation require more resources (e.g., memory, processing capacity, etc.).
As a consequence, energy consumption increases unnecessarily.

Solution: For every use case, find the optimal resolution value that is required to
provide the intended user experience.

Example: Consider a running app that is able to record running sessions. While
the user is running, the app presents the current overall distance in real-time.
While calculating the most accurate value of the total distance would provide
the correct information, it would require precise real-time processing of GPS
or accelerometer sensors, which can be energy greedy. Instead, a lightweight
method could be used to estimate this information with lower but reasonable
accuracy. At the end of the session, the accurate results would still be processed,
but without real-time constraints.

g Catalog of Energy Patterns

4.18 Sensor Fusion

Use data from low power sensors to infer whether new data needs to be collected
from high power sensors

Context: Mobile apps provide features that require reading data or executing
operations in different sensors or components. Such operations can be energy

greedy, causing high power consumption. Thus, they should be called as fewer
times as possible.

Solution: Use complementary data from low power sensors to assure whether a
given energy-greedy operation needs to be executed.

Example: Use the accelerometer to infer whether the user has changed location.
In the case that the user is in the same location, data from GPS does not need
to be updated.

g Catalog of Energy Patterns

4.19 Kill Abnormal Tasks

Provide means of interrupting energy greedy operations (e.g., using timeouts, or
users input).

Context: Mobile apps might feature operations that can be unexpectedly energy

greedy (e.g., taking a long time to execute).

Solution: Provide a reasonable timeout for energy greedy tasks or wake locks.
Alternatively, provide an intuitive way of interrupting those tasks.

Example: In a mobile app that features an alarm clock, set a reasonable timeout
for the duration of the alarm. In case the user is not able to turn it off it will
not drain the battery.

g Catalog of Energy Patterns

4.20 No Screen Interaction

Whenever possible allow interaction without using the display.

Context: There are apps that require a continuous usage of the screen. However,
there are use cases in which the screen can be replaced by less power intensive

alternatives.

Solution: Allow users to interact with the app using alternative interfaces (e.g.,
audio).

Example: In a navigation app, there are use cases in which users might be only
using audio instructions and do not need the screen to be on all the time. This
pattern is commonly adopted by audio players that use the earphone buttons
to play/pause or skip songs.

g Catalog of Energy Patterns

4.21 Avoid Extraneous Graphics and Animations

Graphics and animations are really important to improve the user experience.

However, they can also be battery intensive — use them with moderation (Kim

et al., 2016). This is also a recommendation in the official documentation for i0S

developers'”

Context: Mobile apps often feature impressive graphics and animations. However,
they need to be properly tuned in order to prevent battery drain of users’
devices. This is particularly critical in e-paper devices.

Solution: Study the importance of graphics and animations to the user experi-
ence. The improvement in user experience may not be sufficient to cover the
overhead on energy consumption. Avoid using graphics animations or high-
quality graphics. Resort to low frame rates for animations when possible.

Example: For example, a high frame rate may make sense during game play, but
a lower frame rate may be sufficient for a menu screen. Use a high frame rate
only when the user experience calls for it.

g Catalog of Energy Patterns

4.22 Manual Sync, On Demand

Perform tasks exclusively when requested by the user.

Context: Some tasks can be energy intensive, but not strictly necessary for some
use cases of the app.

Solution: Provide a mechanism in the UI (e.g., button) that allows users to trigger
energy intensive tasks.

Example: In a beacon monitoring app, there are occasions in which the user does
not need to keep track of her/his beacons. Allow the user to start and stop
monitoring manually.

Conclusoes

Apps com padroes de eficiéncia energética

e 25% Android
e 10% 10S

Avoid Extraneous Work
Decrease Rate

User Knows Best

Avoid Extraneous Graphics and
Animations

Power Awareness
Dark Ul Colors
User Knows Best
Race-to-Idle

e Frequéncia similar em ambas
o Inform Users
o Enough Resolution
o Avoid Extraneous Graphics and
Animations

