
Increasing performance in
an Android application

Working with threads
● Most of the performance issues can be solved if you know how to work

with it
● 16 ms delay is enough to observe lack of UI responsiveness on main

thread
○ with 5 seconds delay there is an ANR error

● UI Objects are not thread safe
● Threads cost a minimum of 64k of memory each
● setThreadPriority() method

Working with threads
Implicit reference

Managing memory leaks
● It’s important to take care of it!!!
● Avoid static references
● Unregister your events and handlers
● Understand the architecture before coding

Removing deprecated APIs
● Know and use proper APIs
● Refactor your dependencies
● Update your dependencies and tools periodically
● Tips:

○ Prefer RecyclerView over ListView

Avoid abuse
● Don’t call private APIs by reflection
● Using adb shell am to communicate with other processes should be

avoided
● Don’t use Runtime.exec to communicate with processes

Prefer static methods over virtual methods
● What does virtual methods means?
● Static methods are 15~20% faster
● Static methods won’t alter object state

Use static final for constants
● Non-final fields get their value by a <clinit> method
● For primitive types and Strings, final fields use an optimization
● Use snake case (all caps)

○ no increase in performance, but good practice

Don’t use exceptions to control the flow

 int sum = 0;

 for (int i = 0; i < array.length; ++i) {

 sum += array[i].splat;

 }

Use for-each loop instead of for loop

 int sum = 0;

 for (Foo a : array) {

 sum += a.splat;

 }

Use profilers to profile performance
● Always measure before and after optimizing code
● Sometimes the obvious is not better

Use profilers to profile performance
● Always measure before and after optimizing code
● Sometimes the obvious is not better

 sort(array.begin(), array.end());

 for (int i = 0; i < 100000; ++i) {

 for (int v : array) {

 if (v >= 128) {

 // Code

 }

 }

 }

Avoid using float
● Usually, floating point types are 2x slower than integer types
● doubles are 2x larger than floats

Layout performance improvements
● Reuse layouts with includes and merges
● Be careful with layout hierarchies
● Use the Hierarchy Viewer and Lint to optimize your layouts

Know and use libraries
● Prefer mature and well known libraries
● Don’t reinvent the wheel if you don’t need to

Use native methods carefully
● Writing native (e.g. C/C++) code can be dangerous

○ There’s a cost related to the interoperability
○ The JIT can’t easily optimize native code
○ You need to compile the native code for each architecture you wish to run on
○ $$$

References
https://heartbeat.fritz.ai/increasing-performance-in-an-android-application-10
86640aeef

https://developer.android.com/training/articles/perf-tips

https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-ar
ray-faster-than-processing-an-unsorted-array

https://heartbeat.fritz.ai/increasing-performance-in-an-android-application-1086640aeef
https://heartbeat.fritz.ai/increasing-performance-in-an-android-application-1086640aeef
https://developer.android.com/training/articles/perf-tips
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array
https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-unsorted-array

